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Abstract
The Boltzmann kinetic equation for nonhydrodynamic weakly ionized plasma
in the presence of both electric and magnetic fields is considered. The charged
particles distribution function is decomposed in terms of spherical harmonics
in momentum space. After substituting the expansion into the Boltzmann
equation an infinite hierarchy of differential equations for the distribution
function expansion coefficients is derived. The cases of Cartesian, cylindrical
and spherical coordinates in configuration space are studied. We applied
obtained equations to the description of electron transport in nitrogen at high
values of rf electric field intensity to number density ratio E/N .

PACS numbers: 02.30.Jr, 51.50.+v, 52.25.Dg

1. Introduction

The relativistic Boltzmann kinetic equation for the phase-space distribution function f (r,p, t)

of charged particles (electrons or ions) is expressed as

(∂t + v · ∂r + F · ∂p)f (r,p, t) = C(f ), (1)

where F = q(E + v × B) is the Lorentz force acting on charge q; E and B are electric and
magnetic fields, respectively; C(f ) is the collision operator that acts in momentum space and
characterizes the change rate of the distribution function due to collisions of charged particles
with neutral atoms and molecules. The momentum p and velocity v are connected by the
relation p = Mv[1 − (v/c)2]−1/2, where c is the light velocity and M is the particle mass.

The relativistic Boltzmann equation for electrons in air was solved numerically in articles
[1–3]. In article [1], the Boltzmann equation for a population of relativistic electrons in a
constant external electric field in air was solved numerically in order to determine parameters
of the runway electron beam. In that paper a significant decrease in the air breakdown
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threshold under conditions in which a small number of relativistic electrons were present in
the air was demonstrated. In paper [2], a new mechanism of breakdown in air—runaway
breakdown—was applied to explain the observation of multiple lightning discharges observed
in the Ivy-Mike thermonuclear test in the early 1950s. In paper [3], a three-dimensional Monte
Carlo simulation of runaway relativistic electron breakdown in air in the presence of static
electric and magnetic fields with application to red sprites and terrestrial gamma ray flashes
was given.

Consider spherical coordinates in momentum space p = (p, θp, ϕp). The decomposition
of the distribution function in terms of spherical harmonics in momentum space is described
by

f (r;p, θp, ϕp; t) =
∞∑

n=0

n∑
m=0

1∑
s=0

fn,m,s(r;p; t)Yn,m,s(θp, ϕp), (2)

where [4, 5]

Yn,m,s(θp, ϕp) = P m
n (cos θp)[δs,1 sin(mϕp) + δs,0 cos(mϕp)], (3)

with the orthogonality relationship∫ π

0

∫ 2π

0
Yn,m,s(θp, ϕp)Yn′,m′,s ′(θp, ϕp) sin θp dθp dϕp

= 2π

1 + 2n

(n + m)!

(n − m)!
(1 + δm,0)δn,n′δm,m′δs,s ′ , (4)

δi,j is the Kronecker symbol. The associated Legendre functions are defined by

P m
n (µ) = 1

2nn!
(1 − µ2)m/2 dn+m

dµn+m
(µ2 − 1)n. (5)

In weakly ionized plasma elastic and inelastic collisions of charged particles with only
neutral atoms and molecules are taken into account. In this case the decomposition of the
collision integral in terms of spherical harmonics is written as [6, 7]

C(f ) =
1∑

s=0

∞∑
n=0

n∑
m=0

Cn(fn,m,s)Yn,m,s(θp, ϕp). (6)

Our study does not assume any specific form of the collisional operator, and our results
can be applied for different cases of followed processes and different model expressions
for them. The principal objective was to derive an infinite hierarchy of equations for the
coefficients fn,m,s which can be used to numerically solve the Boltzmann equation with any
approximation order. Specific expressions for Cn(fn,m,s) can be obtained from cross sections
of physical processes taken into account by procedures described in the literature [4]. The
definition of coefficients Cn(fn,m,s) from cross sections of charged particle collisions with
neutral atoms and molecules was considered by several authors [4, 7–9]. For example, in the
article by Porokhova et al [7] coefficients Cn(fn,m,s) were defined for electron collisions with
atoms of an inert gas. Isotropic cross sections for inelastic scattering and anisotropic cross
sections for elastic scattering were used. In papers [8, 9], the decomposition of the collision
integral in terms of Legendre polynomials was made. Coefficients Cn(fn) were defined for
electron collisions with nitrogen molecules. Anisotropic cross sections were used for elastic
and inelastic collisions. Electron–electron collisions were taken into account in collisional
integrals in papers [4, 10, 11]. The collision integral for relativistic electrons in neutral gases
was derived by Gurevich et al [12].
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Jonston [5] supposed that it was impossible to obtain the infinite hierarchy of equations
for coefficients fn,m,s by substituting the decomposition (2) into the Boltzmann equation (1)
and using the orthogonality relationship (4). The arisen difficulties that hindered this problem
are due to terms such as µ(1 − µ)1/2∂µP m

n (µ) for which no simple recursion relation was
obtained. To eliminate this difficulty Jonston proposed to use a tensor scalar product expansion
of the distribution function that is equivalent to the distribution function decomposition in
spherical harmonics. By using this formalism a system of 16 differential equations for the
distribution function expansion coefficients for terms up to n = 3 was obtained for the
Cartesian configuration space in [5]. As pointed out in [7] it seems impossible to get more
than four-term approximation using this formalism.

The Boltzmann equation in the presence of an electric field was reformulated entirely
in terms of spherical tensors by Robson and Ness [13] for the Cartesian geometry and
hydrodynamic plasma conditions. They derived the hierarchy of equations for tensor
decomposition coefficients. The extension of this formalism to the case of electric and
magnetic fields was obtained by Ness [14]. Special configurations of the magnetic field
parallel and perpendicular to the electric field were discussed in detail.

Robson et al [6] generalized the results obtained in [13, 14] to nonhydrodynamic
plasma conditions. The infinite hierarchy of equations for the distribution function expansion
coefficients in the presence of electric field E = (Er, 0, Ez) and gradient ∂r = (∂r , 0, ∂z) was
presented for the axially symmetric cylindrical geometry in [6]. The case of perpendicular
electric E = (Er, 0, 0) and magnetic B = (0, 0, Bz) fields and gradient ∂r = (∂r , 0, 0) was
derived in [7].

The infinite hierarchy of equations for expansion coefficients in the presence of radial
electric field E = (Er, 0, 0) and gradient ∂r = (∂r , 0, 0) was also obtained in [6] for
spherically symmetric geometry. The same for the electric field E = (0, 0, Ez) and gradient
∂r = (0, 0, ∂z) was derived for Cartesian geometry.

The purpose of this paper is to demonstrate that the infinite hierarchy of equations for
distribution function expansion coefficients can be obtained in a quite simple way with no
reference to the formalism given in [5, 13, 14] by only using properties of associated Legendre
functions. The derived infinite hierarchy of differential equations for distribution function
expansion coefficients can be truncated at any desired step. Such a finite system of equations
allows us to numerically solve the Boltzmann equation with any approximation order. We
would like to underline that terms such as µ(1 − µ)1/2∂µP m

n (µ) can be transformed into
a linear combination of associated Legendre functions, which was claimed impossible in
Jonston’s paper where he had to choose another way of solving the problem [see [5], p 1106].

In section 2, the infinite hierarchy of equations for distribution function expansion
coefficients in the presence of electric E = (Ex,Ey,Ez) and magnetic B = (Bx, By, Bz)

fields, and gradients ∂r = (∂x, ∂y, ∂z) is deduced for Cartesian coordinates r = (x, y, z).
Similar expressions for cylindrical and spherical coordinates are given in sections 3 and

4. Comparison of our results with results obtained by other researchers is given in section 5.
We apply obtained equations to describe electron transport in nitrogen at high values of E/N

in section 6.

2. The hierarchy of equations for Cartesian geometry

Let r = (x, y, z) and p = (p, θp, ϕp) denote Cartesian coordinates in configuration space
and spherical coordinates in momentum space, respectively. All components of the electric
and magnetic fields E = (Ex,Ey,Ez) and B = (Bx, By, Bz) are given. Unit vectors ix and
iz define directions of axes x and z, respectively. The unit vector ip defines the direction of

3



J. Phys. A: Math. Theor. 41 (2008) 355501 Y I Matveenko et al

the momentum p. In this frame cos θp = iz · ip. The angle ϕp is the dihedral angle between
planes formed by the vectors iz and ix and the vectors iz and ip. In this phase space the
Boltzmann equation (1) is written as(

∂t + vx∂x + vy∂y + vz∂z + Fp∂p + Fθp

1

p
∂θp

+ Fϕp

1

p sin θp

∂ϕp

)
× f (x, y, z;p, θp, ϕp, t) = C(f ). (7)

The Cartesian components of the Lorentz force acting on charge q are equal to

Fx = q(vyBz − vzBy + Ex),

Fy = q(vzBx − vxBz + Ey),

Fz = q(vxBy − vyBx + Ez).

(8)

The spherical components of the velocity vector are related to the Cartesian ones by

vx = v sin θp cos ϕp, vy = v sin θp sin ϕp, vz = v cos θp. (9)

The Cartesian components of the Lorentz force vector are related to the spherical ones by

Fp = (Fx cos ϕp + Fy sin ϕp) sin θp + Fz cos θp,

Fθp
= (Fx cos ϕp + Fy sin ϕp) cos θp − Fz sin θp,

Fϕp
= −Fx sin ϕp + Fy cos ϕp.

(10)

The substitution of the distribution function expansion (2), the collision integral expansion
(6) and expressions (8)–(10) into the Boltzmann equation (7) results in

{
∂t+v(1 − µ2)1/2[cos ϕp∂x + sin ϕp∂y] + vµ∂z

+
[
qEx(1 − µ2)1/2 cos ϕp + qEy(1 − µ2)1/2 sin ϕp + qEzµ

]
∂p

− [ωx sin ϕp − ωy cos ϕp + qExp
−1µ cos ϕp + qEyp

−1µ sin ϕp

− qEzp
−1(1 − µ2)1/2](1 − µ2)1/2∂µ + [ωxµ cos ϕp + ωyµ sin ϕp

− (1 − µ2)1/2ωz − qExp
−1 sin ϕp + qEyp

−1 cos ϕp](1 − µ2)−1/2∂ϕp

}
×

1∑
s=0

∞∑
n=0

n∑
m=0

fn,m,sP
m
n (µ)[δs,1 sin(mϕp) + δs,0 cos(mϕp)]

=
1∑

s=0

∞∑
n=0

n∑
m=0

Cn(fn,m,s)Yn,m,s, (11)

where

µ = cos θp, ωx = qv

p
Bx, ωy = qv

p
By, ωz = qv

p
Bz.

Replace expressions

(1 − µ2)1/2P m
n , (1 − µ2)−1/2P m

n , µP m
n , (1 − µ2)1/2∂µP m

n ,

µ(1 − µ2)1/2∂µP m
n , (1 − µ2)∂µP m

n , µ(1 − µ2)−1/2P m
n ,

(12)

by linear combinations of associated Legendre functions according to formulae (A.7)–(A.11),
(A.16)–(A.17) and substitute results into equation (11).
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After multiplication of equation (11) by Yn′,m′,s ′(θp, ϕp) and integration over all directions
of momentum space ip, using the orthogonality relationship (4), the following infinite
hierarchy of equations for the distribution function coefficients fn,m,s is obtained:

∂tfn,m,s +
1 + δm,1

2(2n − 1)

[(
v∂x + qEx∂

(−)
p,n

)
fn−1,m−1,s − (−1)s

(
v∂y + qEy∂

(−)
p,n

)
fn−1,m−1,1−s

]
− (n − m − 1)(n − m)

2(2n − 1)

[(
v∂x + qEx∂

(−)
p,n

)
fn−1,m+1,s

+ (−1)s
(
v∂y + qEy∂

(−)
p,n

)
fn−1,m+1,1−s

]
+

n − m

2n − 1

[
v∂z + qEz∂

(−)
p,n

]
fn−1,m,s

− 1 + δm,1

2(2n + 3)

[(
v∂x + qEx∂

(+)
p,n

)
fn+1,m−1,s − (−1)s

(
v∂y + qEy∂

(+)
p,n

)
fn+1,m−1,1−s

]
+

(n + m + 1)(n + m + 2)

2(2n + 3)

[(
v∂x + qEx∂

(+)
p,n

)
fn+1,m+1,s

+ (−1)s
(
v∂y + qEy∂

(+)
p,n

)
fn+1,m+1,1−s

]
+

n + m + 1

2n + 3

[
v∂z + qEz∂

(+)
p,n

]
fn+1,m,s

+
1 + δm,1

2
[ωyfn,m−1,s + (−1)sωxfn,m−1,1−s] − (−1)smωzfn,m,1−s

− (n − m)(n + m + 1)

2
[ωyfn,m+1,s − (−1)sωxfn,m+1,1−s] = Cn(fn,m,s),

(n = 0, 1, 2, . . . ,∞; m = 0, 1, 2, . . . , n; s = 0, 1). (13)

The following designations are used

∂(−)
p,n = ∂p − n − 1

p
, ∂(+)

p,n = ∂p +
n + 2

p
.

In equation (13) we assume (see expression (A.6)) that

fn,m,s = 0, for cases: n < 0 or m < 0 or n < m or m = 0, s = 1. (14)

Truncation of the expansion (2) and the hierarchy (13) at n = nmax corresponds to the
(nmax + 1)-term approximation and results in (nmax + 1)2 independent equations and the same
number of unknown fn,m,s .

3. The hierarchy of equations for cylindrical geometry

Let r = (r, ϕ, z) and p = (p, θp, ϕp) denote cylindrical coordinates in configuration space
and moving spherical coordinates in momentum space, respectively. The unit vector iz defines
the axis z-direction. Unit vectors ip and ir define directions of momentum p and radius vector
r, respectively. In this frame cos θp = iz · ip. The angle ϕp is the dihedral angle between
planes formed by vectors iz and ir and vectors iz and ip. This coordinate system is commonly
used for neutron transport problems [15]. All components of electric E = (Er, Eϕ,Ez)

and magnetic B = (Br, Bϕ, Bz) fields are given. The Boltzmann equation (1) in the chosen
coordinates is[

∂t + vr∂r +
vϕ

r

(
∂ϕ − ∂ϕp

)
+ vz∂z + Fp∂p + Fθp

1

p
∂θp

+
Fϕp

p sin θp

∂ϕp

]

× f (r, ϕ, z;p, θp, ϕp, t) = C(f ). (15)

5
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The cylindrical components of the Lorentz force acting on charge q are equal to

Fr = q(vϕBz − vzBϕ + Er),

Fϕ = q(vzBr − vrBz + Eϕ),

Fz = q(vrBϕ − vϕBr + Ez).

(16)

The spherical components of the velocity vector are related to the cylindrical ones by

vr = v sin θp cos ϕp, vϕ = v sin θp sin ϕp, vz = v cos θp. (17)

The cylindrical components of the Lorentz force vector are related to the spherical ones by

Fp = (Fr cos ϕp + Fϕ sin ϕp) sin θp + Fz cos θp,

Fθp
= (Fr cos ϕp + Fϕ sin ϕp) cos θp − Fz sin θp,

Fϕp
= −Fr sin θp + Fϕ cos ϕp.

(18)

Substituting the distribution function expansion (2), the collision integral expansion (6)
and expressions (16)–(18) into the Boltzmann equation (15) gives the following equation:

{∂t + v(1 − µ2)1/2[cos ϕp∂r + r−1 sin ϕp(∂ϕ − ∂ϕp
)] + vµ∂z

+ [(1 − µ2)1/2(qEr cos ϕp + qEϕ sin ϕp) + µqEz]∂p − [ωr sin ϕp − ωϕ cos ϕp

+ µp−1(qEr cos ϕp + qEϕ sin ϕp) − qEzp
−1(1 − µ2)1/2](1 − µ2)1/2∂µ

+ [µ(ωr cos ϕp + ωϕ sin ϕp) − (1 − µ2)1/2ωz

− qErp
−1 sin ϕp + qEϕp−1 cos ϕp]

× (1 − µ2)−1/2∂ϕp
}

1∑
s=0

∞∑
n=0

n∑
m=0

fn,m,sP
m
n (µ)[δs,1 sin(mϕp) + δs,0 cos(mϕp)]

=
1∑

s=0

∞∑
n=0

n∑
m=0

Cn(fn,m,s)Yn,m,s, (19)

where

ωr = qvp−1Br, ωϕ = qvp−1Bϕ, ωz = qvp−1Bz.

Replace expressions (12) by the linear combination of associated Legendre functions
according to formulae (A.7)–(A.11), (A.16)–(A.17) and substitute results into equation (19).
Multiplying equation (19) by Yn′,m′,s ′(θp, ϕp), integrating over all directions of momentum
space ip and using the orthogonality relationship (4) give the following infinite hierarchy of
equations for coefficients fn,m,s :

∂tfn,m,s +
1 + δm,1

2(2n − 1)

[ (
v∂r − (m − 1)

v

r
+ qEr∂

(−)
p,n

)
fn−1,m−1,s

− (−1)s
(v

r
∂ϕ + qEϕ∂(−)

p,n

)
fn−1,m−1,1−s

]

− (n − m − 1)(n − m)

2(2n − 1)

[ (
v∂r + (m + 1)

v

r
+ qEr∂

(−)
p,n

)
fn−1,m+1,s

+ (−1)s
(v

r
∂ϕ + qEϕ∂(−)

p,n

)
fn−1,m+1,1−s

]
+

n − m

2n − 1

[
v∂z + qEz∂

(−)
p,n

]
fn−1,m,s

− 1 + δm,1

2(2n + 3)

[(
v∂r − (m − 1)

v

r
+ qEr∂

(+)
p,n

)
fn+1,m−1,s

6
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− (−1)s
(

v

r
∂ϕ + qEϕ∂(+)

p,n

)
fn+1,m−1,1−s

]

+
(n + m + 1)(n + m + 2)

2(2n + 3)

[ (
v∂r + (m + 1)

v

r
+ qEr∂

(+)
p,n

)
fn+1,m+1,s

+ (−1)s
(v

r
∂ϕ + qEϕ∂(+)

p,n

)
fn+1,m+1,1−s

]
+

n + m + 1

2n + 3

[
v∂z + qEz∂

(+)
p,n

]
fn+1,m,s

+
1 + δm,1

2
[ωϕfn,m−1,s + (−1)sωrfn,m−1,1−s] − (−1)smωzfn,m,1−s

− (n − m)(n + m + 1)

2
[ωϕfn,m+1,s − (−1)sωrfn,m+1,1−s] = Cn(fn,m,s),

(n = 0, 1, 2, . . . ,∞; m = 0, 1, 2, . . . , n; s = 0, 1). (20)

Coefficients fn,m,s satisfy condition (14).
For the four-term approximation case, 16 equations (B.1)–(B.16) are given in

appendix B.

4. The hierarchy of equations for spherical geometry

Let r = (r, θ, ϕ) and p = (p, θp, ϕp) denote spherical coordinates in configuration space and
moving spherical coordinates in momentum space, respectively. The unit vector iz defines the
axis z direction. Unit vectors ip and ir define directions of momentum p and radius vector
r, respectively. In this frame cos θp = ir · ip. The angle ϕp is the dihedral angle between
the planes formed by vectors ir and iz and vectors ir and ip. Such a coordinate system
is commonly used for neutron transport problems [15]. All components of electric E =
(Er, Eθ , Eϕ) and magnetic B = (Br, Bθ , Bϕ) fields are given. The Boltzmann equation (1)
in the chosen phase space has the following form:{
∂t + vr∂r +

vθ

r
∂θ +

vϕ

r sin θ

[
∂ϕ − cos θ∂ϕp

] − 1

r

(
v2

θ + v2
ϕ

)1/2
∂θp

+ Fp∂p +
Fθp

p
∂θp

+
Fϕp

p sin θp

∂ϕp

}
f (r, θ, ϕ;p, θp, ϕp; t) = C(f ). (21)

The spherical components of the Lorentz force acting on charge q are described by

Fr = q(vθBϕ − vϕBθ + Er),

Fθ = q(vϕBr − vrBϕ + Eθ),

Fϕ = q(vrBθ − vθBr + Eϕ).

(22)

The spherical components of the velocity vector are

vr = v cos θp, vθ = v sin θp cos ϕp, vϕ = v sin θp sin ϕp. (23)

The spherical components of the Lorentz force vector in configuration space are related to the
local spherical basis of momentum space (p, θp, ϕp) by

Fp = Fr cos θp + (Fθ cos ϕp + Fϕ sin ϕp) sin θp,

Fθp
= −Fr sin θp + (Fθ cos ϕp + Fϕ sin ϕp) cos θp,

Fϕp
= −Fθ sin ϕp + Fϕ cos ϕp.

(24)

7
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The substitution of the distribution function (2) and the collision integral (6) expansions
and expressions (22)–(24) into the Boltzmann equation (21) yields{
∂t + vµ∂r +

v

r
(1 − µ2)1/2

[
sin ϕp

sin θ
∂ϕ + cos ϕp∂θ + (1 − µ2)1/2∂µ − sin ϕp cot θ∂ϕp

]

+ [qEθ(1 − µ2)1/2 cos ϕp + qEϕ(1 − µ2)1/2 sin ϕp + qErµ]∂p − [ωθ sin ϕp

−ωϕ cos ϕp + qEθp
−1µ cos ϕp + qEϕp−1µ sin ϕp

− qErp
−1(1 − µ2)1/2](1 − µ2)1/2∂µ + [ωθµ cos ϕp + ωϕµ sin ϕp

− (1 − µ2)1/2ωr − qEθp
−1 sin ϕp + qEϕp−1 cos ϕp]

× (1 − µ2)−1/2∂ϕp

} 1∑
s=0

∞∑
n=0

n∑
m=0

fn,m,sP
m
n (µ)[δs,1 sin(mϕp) + δs,0 cos(mϕp)]

=
1∑

s=0

∞∑
n=0

n∑
m=0

Cn(fn,m,s)Yn,m,s, (25)

where the coefficients are

ωr = qvp−1Br, ωθ = qvp−1Bθ, ωϕ = qvp−1Bϕ.

Again replace expressions (12) by the linear combinations of associated Legendre
functions according to formulae (A.7)–(A.11), (A.16)–(A.17) and substitute results into
equation (25).

Multiplying equation (25) by Yn′,m′,s ′(θp, ϕp), integrating over all directions of momentum
space ip and using the orthogonality relationship (4) gives the following infinite hierarchy of
equations for the coefficients fn,m,s :

∂tfn,m,s +
1 + δm,1

2(2n − 1)

[(
v

r
∂θ − (m − 1)

v

r
cot θ + qEθ∂

(−)
p,n

)
fn−1,m−1,s

− (−1)s
(

v

r sin θ
∂ϕ + qEϕ∂(−)

p,n

)
fn−1,m−1,1−s

]

− (n − m − 1)(n − m)

2(2n − 1)

[(
v

r
∂θ + (m + 1)

v

r
cot θ + qEθ∂

(−)
p,n

)
fn−1,m+1,s

+ (−1)s
(

v

r sin θ
∂ϕ + qEϕ∂(−)

p,n

)
fn−1,m+1,1−s

]

+
n − m

2n − 1

[
v∂r − (n − 1)

v

r
+ qEr∂

(−)
p,n

]
fn−1,m,s

− 1 + δm,1

2(2n + 3)

[(
v

r
∂θ − (m − 1)

v

r
cot θ + qEθ∂

(+)
p,n

)
fn+1,m−1,s

− (−1)s
(

v

r sin θ
∂ϕ + qEϕ∂(+)

p,n

)
fn+1,m−1,1−s

]

+
(n + m + 1)(n + m + 2)

2(2n + 3)

[(
v

r
∂θ + (m + 1)

v

r
cot θ + qEθ∂

(+)
p,n

)
fn+1,m+1,s

+ (−1)s
(

v

r sin θ
∂ϕ + qEϕ∂(+)

p,n

)
fn+1,m+1,1−s

]

8
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+
n + m + 1

2n + 3

[
v∂r + (n + 2)

v

r
+ qEr∂

(+)
p,n

]
fn+1,m,s

+
1 + δm,1

2
[ωϕfn,m−1,s + (−1)sωθfn,m−1,1−s] − (−1)smωrfn,m,1−s

− (n − m)(n + m + 1)

2
[ωϕfn,m+1,s − (−1)sωθfn,m+1,1−s] = Cn(fn,m,s),

(n = 0, 1, 2, . . . ,∞; m = 0, 1, 2, . . . , n; s = 0, 1). (26)

Coefficients fn,m,s satisfy condition (14).

5. Comparison with previous results

The non-relativistic Boltzmann equation for the distribution function in phase space is written
as [

∂t + v · ∂r +
q

M
(E + v × B) · ∂v

]
f̃ (r,v, t) = C(f̃ ). (27)

The decomposition of the distribution function in terms of spherical harmonics in velocity
space with the basis of spherical coordinates v = (v, θv, ϕv) is

f̃ (r; v, θv, ϕv; t) =
∞∑

n=0

n∑
m=0

1∑
s=0

f̃ n,m,s(r; v; t)

×P m
n (cos θp)[δs,1 sin(mϕp) + δs,0 cos(mϕp)]. (28)

The hierarchy of equations for the distribution function expansion coefficients f̃ n,m,s

for Cartesian, cylindrical and spherical geometry of configuration space results from
equations (13), (20) and (26) through transformations

p = Mv, ∂p = M−1∂v, fn,m,s(r;p; t) = M3f̃ n,m,s(r; v; t). (29)

Below we compare the hierarchy in cylindrical (20) and Cartesian (13) coordinates with
results obtained in [5–7].

5.1. Cylindrical geometry

The hierarchy of equations for distribution function decomposition coefficients in the presence
of electric field E = (Er, 0, Ez) and gradient ∂r = (∂r , 0, ∂z) for axially symmetric geometry
is given in [6]. The decomposition of the distribution function in terms of spherical harmonics
in velocity space is described in this paper as follows:

F(r, z; v, θv, ϕ̃v − ϕ; t) =
∞∑

n=0

n∑
m=−n

Fn,m(r, z; v; t)P |m|
n (cos θv) eim(ϕ̃v−ϕ). (30)

As the expansion coefficients Fn,m and Fn,−m are complex conjugate functions

Re(Fn,−m) = Re(Fn,m), Im(Fn,−m) = −Im(Fn,m), (31)

expression (30) can be rewritten as

F =
∞∑

n=0

Re(Fn,0)P
0
n (cos θv) + 2

∞∑
n=1

n∑
m=1

Re(Fn,m)P m
n (cos θv) cos [m(ϕ̃v − ϕ)]

− 2
∞∑

n=1

n∑
m=1

Im(Fn,m)P m
n (cos θv) sin[m(ϕ̃v − ϕ)]. (32)

9
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It should be noted that the azimuthal angle ϕ̃v − ϕ in [6] corresponds to the azimuthal angle
ϕv in the moving coordinates used in this paper. The comparison of equations (32) and (28)
gives the following relations between the distribution function expansion coefficients f̃n,m,s

introduced in our paper and Fn,m used in [6]

f̃ n,0,0 = Re(Fn,0) for n = 0, 1, . . . ,∞,

f̃ n,m,0 = 2 Re(Fn,m) for n = 1, 2, . . . ,∞; m = 1, 2, . . . , n,

f̃ n,m,1 = −2 Im(Fn,m) for n = 1, 2, . . . ,∞; m = 1, 2, . . . , n.

(33)

As the magnetic field is not taken into account in [6], then Im(Fn,m) = 0, Fn,m = Re(Fn,m)

and equation (33) transforms into

f̃ n,0,0 = Fn,0 for n = 0, 1, . . . ,∞,

f̃ n,m,0 = 2Fn,m for n = 1, 2, . . . ,∞; m = 1, 2, . . . , n.
(34)

After transforming the hierarchy (20) according to formula (29), replacing the distribution
function coefficients f̃ n,m,s by Fn,m according to formula (34), taking into account only two
components of electric field E = (Er, 0, Ez) and gradient ∂r = (∂r , 0, ∂z), the result obtained
coincides with the hierarchy (33) in [6].

Similar transformations of equations for the distribution function expansion coefficients
(B.1)–(B.16) in four-term approximation taking into account only the radial electric field
E = (Er, 0, 0) and gradient ∂r = (∂r , 0, 0) give equations which are identical to
equations (37)–(42) in [6].

The electric and magnetic fields with components E = (Er, 0, 0),B = (0, 0, Bz) and
gradient ∂r = (∂r , 0, 0) are considered in [7]. The decomposition of the distribution function
in terms of spherical harmonics in velocity space takes the form

F̃ (r, z; v, θv, ϕ̃v − ϕ; t) =
∞∑

n=0

n∑
m=−n

1

2|m| F̃n,m(r, z; v; t)P |m|
n (cos θv) eim(ϕ̃v−ϕ). (35)

Comparing equations (35) and (30) and accounting for (33) give the following relations for
expansion coefficients

f̃ n,0,0 = Re(F̃n,0) for n = 0, 1, . . . ,∞,

f̃ n,m,0 = 1

2|m|−1
Re(F̃n,m) for n = 1, 2, . . . ,∞, m = 1, 2, . . . , n,

f̃ n,m,1 = − 1

2|m|−1
Im(F̃n,m) for n = 1, 2, . . . ,∞, m = 1, 2, . . . , n.

(36)

After transforming the hierarchy (20) according to (29) taking into account only the
field components E = (Er, 0, 0),B = (0, 0, Bz) and gradient ∂r = (∂r , 0, 0), introducing
ωz = −� and considering ∂t f̃ n,m,s = 0, the result obtained coincides with the hierarchy (13)
in [7] if in equation (13) complex expansion coefficients are transformed to real ones. For
that we take real and imaginary parts of the hierarchy (13) in [7] and replace its expansion
coefficients by those introduced in our paper by formulae (36) and (31).

5.2. Cartesian geometry

The system consisting of 16 differential equations for distribution function expansion
coefficients for the four-term approximation in the presence of electric and magnetic
fields and gradients was given by Jonston [5]. A similar system of equations can be
obtained from hierarchy (13) transformed with formulae (29). It can also be derived from

10
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equations (B.1)–(B.16) with formulae (29) with further transformation from cylindrical
coordinates to Cartesian ones using

∂r → ∂x,
1

r
∂ϕ → ∂y,

v

r
→ 0. (37)

Comparing our results with those given in [5] we see some differences in values of some
coefficients and their signs. Probably there are errata in [5]. For example, in equations (13)
and (14) in [5] terms 2ωzf3,2,1 and 2ωzf3,2,0 have identical signs and in equations (15) and
(16) terms 3ωzf̃ 3,3,1 and 3ωzf̃ 3,3,0 also have identical signs. It follows from the hierarchy
(13) that the sign must vary according to the rule

∂t f̃ n,m,s + · · · − (−1)smωzf̃ n,m,1−s + · · · . (38)

It should be noted that the same follows from hierarchy (13) in [7].

6. Application to electron transport in nitrogen at high values of E/N

Hays et al [9] have measured the electron-impact ionization rate coefficient in molecular
nitrogen for a range of rf electric field intensity to number density ratio E/N from 450 to
12 000 Td (1 Td = 10−21 V m2). These measurements were made in an electrodeless cell
contained in an S-band waveguide immersed in a dc magnetic field and subject to a pulsed rf
electric field at cyclotron resonance.

They also simulated this experiment in a very simplified setup. A spatially uniform
microwave field was suddenly applied to a swarm of electrons in a background gas of
nitrogen molecules in the ground state and imbedded in a uniform static magnetic field
aligned perpendicular to the electric field. In Cartesian components the electric and magnetic
fields are given by

Ez = E0 cos(ωht), By = 0.125 T, (39)

where ωh = qBym−1. A spherical harmonics expansion of the non-relativistic Boltzmann
equation with a two-term approximation was used and simplified to follow{

∂t − 1

3v2
∂v

(
v2 e2E2

eff

m2νtot(v)
∂v

)}
f̃ 0 = C(f̃ 0). (40)

The effective dc electric field Eeff , which includes effects of a microwave electric field
and a constant magnetic field, is given by [9]

Eeff = E0

2

[
1

1 + (ωh − ωy)2ν−2
tot (v)

+
1

1 + (ωh + ωy)2ν−2
tot (v)

]1/2

. (41)

The total scattering frequency is

νtot(T ) = v(T )NQtot(T ), (42)

where Qtot(T ) is the total N2 scattering cross section including elastic, inelastic and ionizing
collisions [19]. For conditions of the problem ωy = ωh = 2.199 × 1010c−1, νtot < 2 × 108c−1

and Eeff ≈ E0/2.
From relativistic formulae we obtain

ωy(T ) = ωh

mc2

mc2 + T
, v(T ) = c

[
T

(
T + 2mc2

)]1/2

T + mc2
. (43)

Substituting equations (42) and (43) into (41) we find ratio 2Eeff/E0 as a function of electron
kinetic energy T, which is plotted in figure 1. Relativity decreases the effective electric field
Eeff for electrons with kinetic energy greater than 1 keV.

11
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Figure 1. Ratio 2Eeff/E0 calculated from equation (41) versus electron kinetic energy T.

In our calculations we used a Maxwellian initial electron distribution function with the
average electron energy 0.75 eV. The pressure of N2 was 0.018 Torr and its density was
N = 3.67 × 1014 cm−3. Calculations were carried out for the density-normalized electric
fields E/N = 9076 Td and E/N = 90760 Td. The amplitude of the rf electric field was
E0 = 2E.

The collision operator includes electron-neutral-molecules elastic, inelastic and ionizing
collisions. In experiments described in [9] the electron density at the time when the high-
frequency field was applied was 5×106 cm−3, and during the pulse it did not exceed 109 cm−3.
This permits us to ignore electron–electron and electron–ion collisions.

The infinite hierarchy of equations for the distribution function coefficients fn,m,s obtained
in (13) takes the following form:

∂tfn,m,s +
n − m

2n − 1
qEz

(
∂p − n − 1

p

)
fn−1,m,s +

n + m + 1

2n + 3
qEz

(
∂p +

n + 2

p

)
fn+1,m,s

+
1 + δm,1

2
ωyfn,m−1,s − (n − m)(n + m + 1)

2
ωyfn,m+1,s = Cn(fn,m,s),

(n = 0, 1, 2, . . . ,∞; m = 0, 1, 2, . . . , n; s = 0), (44)

where ωy = qvByp
−1.

The collision operator coefficients Cn

(
fn,m,s(p, t)

)
are equal to [4, 8, 9, 17]

Cn(fn,m,s(p, t)) = −Nv

(
Q0

0(p) +
∑

k

Qk
0(p) +

∑
i

Qi
0(p)

)
fn,m,s(p, t)

+ NvQ0
n(p) + N

∑
k

Qk
n(pk)vkfn,m,s(pk, t)

+ δn,0
(p2 + m2c2)1/2

Mcp2+ξ
∂p

{
vp3+ξ

[
Q0

0(p) − Q0
1(p)

]
f0,0,0(p, t)

}
12
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+ δn,0N
∑

i

∫ 2T +εi

T +εi

σ i
n(ε, ε − εi − T )vεf0,0,0(pε, t) dε

+ δn,0N
∑

i

∫ Tmax

2T +εi

σ i
n(ε, T )vεf0,0,0(pε, t) dε. (45)

The following designations are used

vk = c
pk(

p2
k + m2c2

)1/2 , (46)

p2
k + m2c2 = [ (

p2 + m2c2
)1/2

+ c−1εk

]2
, (47)

vε = c
pε(

p2
ε + m2c2

)1/2 , (48)

pε = [(mc + c−1ε)2 − m2c2]1/2, (49)

ξ = v2

c2
. (50)

Kinetic energy T is related to momentum p by

(T + mc2)2 = p2c2 + m2c4. (51)

In equation (45) for decomposition coefficients of cross section Q
j
n superscripts j = 0, k, i

indicate types of collision process: elastic, inelastic or ionizing collisions, respectively, the
same designation as in [8]; εk and εi are excitation and ionization potentials; σ i

0(ε, T ) is
the differential cross section for the electron-impact ionization of N2, (ε and T are kinetic
energies of incident and secondary electrons, respectively); m and M are masses of electron
and nitrogen molecules.

Cross sections for electron collisions with nitrogen molecules assembled in articles
[8, 18–21], analytical formulae for elastic Q0

n

/
Q0

0 and inelastic Qk
n

/
Qk

0 (for n = 1, . . . , 5)
derived in paper by Phelps et al [8] were used. Angular distribution of electrons produced by
ionization of nitrogen molecules is supposed to be isotropic.

Truncation of the expansion (2) and the hierarchy (44)–(45) at n = nmax corresponds to
the (nmax + 1)-term approximation and results in (nmax + 1)(nmax + 2)/2 independent integral-
differential equations and the same number of unknown fn,m,s .

We calculated the following quantities: electron density, ionization frequency νi , mean
electron kinetic energy 〈T 〉. These quantities are expressed through the coefficient f0,0,0(p, t)

according to

〈T 〉 = 4π

ne

∫
Tf0,0,0(p, t)p2 dp, (52)

νi

N
= 4π

ne

∫
vQi

0(p)f0,0,0(p, t)p2 dp, (53)

ne = 4π

∫
f0,0,0(p, t)p2 dp. (54)

In table 1 mean electron energy 〈T 〉 and density-normalized ionization frequency νi/N for
time Nt = 4 × 107 cm−3 s are given for different approximation orders. For E/N = 9076 Td
the third-order approximation is sufficient, while for larger E/N = 90760 Td convergence is
slower and at least the 7th order is required.

13
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Figure 2. Calculated differential density dne/dT for time Nt = 4 × 107 cm−3 s as a function of
electron kinetic energy T. A normalization is chosen in which ne = 1 at t = 0. The solid line
is for E/N = 9076 Td and the relativistic equation. The dot line is for E/N = 9076 Td and the
non-relativistic equation. The dash-dot line is for E/N = 90760 Td and the relativistic equation.

Table 1. Calculated values of parameters for different approximation orders.

E/N (Td) n-term 〈T 〉(keV) νi/N (10−7 cm3 s−1)

9 076 2 0.193 1.237
9 076 3 0.218 1.162
9 076 4 0.215 1.161

90 760 2 5.56 1.050
90 760 3 5.76 0.930
90 760 4 5.17 1.088
90 760 5 5.42 1.013
90 760 6 5.23 1.066
90 760 7 5.31 1.043

Additional calculations using the non-relativistic Boltzmann equation with constant
volume ωy = ωh were carried out.

In figure 2 differential densities dne/dT for time Nt = 4 × 107 cm−3 s as functions
of electron kinetic energy T for E/N = 9076 Td in the four-term approximation and for
E/N = 90 760 Td in the seven-term approximation are plotted.

Figure 2 shows that in a dc magnetic field and pulsed rf electric field at cyclotron resonance
it is important to take into account relativistic effects. Calculation results for the relativistic
and non-relativistic Boltzmann equations at E/N = 9076 Td differ insignificantly, while
at E/N = 90760 Td they are noticeably different. The solutions of the non-relativistic
Bolzmann equation for E/N = 90760 Td and time Nt = 4 × 107 cm−3 s show that the mean
electron energy 〈T 〉 and density-normalized ionization frequency νi/N are equal to 90 keV
and 5.8 × 10−8 cm3 s−1, respectively.

14
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The experimental value of the density-normalized ionization frequency for E/N =
90760 Td and time Nt = 4×107 cm−3 s measured in paper [9] equals 8×10−7 < ν

exper.
i

/
N <

1.1×10−7 cm3 s−1. Our calculated value equals 1.161×10−7 cm3 s−1. Calculations described
in paper [9] gave a larger value 1.28 × 10−7 cm3 s−1.

These calculations reveal the significance of using higher order approximation of the
relativistic Boltzmann equation for the described problem.

7. Conclusion

The Relativistic Boltzmann equation for the charged particles distribution function in the
presence of electric and magnetic fields in weakly ionized plasma was considered. The
distribution function is decomposed in terms of spherical harmonics in momentum space. A
simple method of deducing an infinite hierarchy of differential equations for the distribution
function expansion coefficients based on properties of associated Legendre functions was
proposed. Such infinite hierarchies were obtained for Cartesian, cylindrical and spherical
geometries. If we truncate them at any step we receive a finite system of equations for a
finite number of distribution function expansion coefficients. By solving this system we get
approximate solutions of the Boltzmann equation with any desired order. Such solutions can
be used to derive transport coefficients of weakly ionized plasma, using techniques described
elsewhere [4, 7–9].

We applied obtained equations to the description of electron transport in nitrogen at
high values of rf electric field intensity to number density ratio E/N . The time-dependent
Boltzmann equation was numerically solved for the electron cloud in weakly ionized nitrogen
in the presence of a dc magnetic field of 0.125 T and a transverse rf electric field at cyclotron
resonance. The influence of high-order terms approximation and relativity was studied.
Results were compared with experimental data and calculations using other methods [9].
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Appendix A. Recursion relations

In [16] five recursion relations (−1 < µ < 1) are given by

(2n + 1)µP m
n (µ) − (n − m + 1)P m

n+1(µ) − (n + m)P m
n−1(µ) = 0, (0 � m � n − 1) (A.1)

(µ2 − 1)∂µP m
n (µ) − (n − m + 1)P m

n+1(µ) + (n + 1)µP m
n (µ) = 0, (0 � m � n) (A.2)

P m+2
n (µ) − 2(m + 1)µ(1 − µ2)−1/2P m+1

n (µ) + [n(n + 1) − m(m + 1)] P m
n (µ) = 0,

(0 � m � n − 2) (A.3)

P m
n+1(µ) − P m

n−1(µ) − (2n + 1)(1 − µ2)1/2P m−1
n (µ) = 0, (1 � m � n − 1) (A.4)

(n + m)(n + m + 1)P m
n−1(µ) − (n − m)(n − m + 1)P m

n+1(µ)

− (2n + 1)(1 − µ2)1/2P m+1
n (µ) = 0, (0 � m � n − 1). (A.5)
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For convenience of the further notation, we assume

P m
n (µ) = 0, for cases m < 0 or n < 0 or n < m. (A.6)

Taking into account expression (A.6) equations (A.1), (A.4)–(A.5) are correct for m = n and
equation (A.3) is correct for m = n − 1.

Using expressions (A.1)–(A.5) and the definition of associated Legendre functions (5),
we can express terms (12) by linear combinations of associated Legendre functions.

Solving equation (A.1) with respect to µP m
n (µ) and using (A.6), we can write

µP m
n (µ) = 1

2n + 1

[
(n − m + 1)P m

n+1(µ) + (n + m)P m
n−1(µ)

]
, (0 � m � n). (A.7)

Substituting equation (A.7) into equation (A.2), we find that

(1 − µ2)∂µP m
n (µ) = 1

2n + 1

[
(n + 1)(n + m)P m

n−1(µ) − n(n − m + 1)P m
n+1(µ)

]
,

(0 � m � n). (A.8)

Solving equation (A.3) with respect to µ(1−µ2)−1/2P m
n (µ) and taking into account expression

(A.6), we obtain

µ(1 − µ2)−1/2P m
n (µ) = 1

2m

{
P m+1

n (µ) + [n(n + 1) − (m − 1)m] P m−1
n (µ)

}
,

(1 � m � n). (A.9)

Taking into account expression (A.6), we obtain from equation (A.4) the following expression:

(1 − µ2)1/2P m
n (µ) = 1

2n + 1

[
P m+1

n+1 (µ) − P m+1
n−1 (µ)

]
, (0 � m � n). (A.10)

Multiplying equations (A.4)–(A.5) by a factor (1 − µ2)−1/2, solving the new equations with
respect to (1 − µ2)−1/2P m

n (µ) and taking into account expression (A.6), we can obtain

(1 − µ2)−1/2P m
n (µ) = 1

2m

[
P m+1

n+1 (µ) + (n − m + 1)(n − m + 2)P m−1
n+1 (µ)

]
,

(1 � m � n). (A.11)

Excluding expression (1−µ2)1/2P m−1
n (µ) from equations (A.4)–(A.5) and taking into account

expression (A.6), we can obtain

P m
n (µ) = [

P m
n−2(µ) + (n + m − 3)(n + m − 2)P m−2

n−2 (µ)

− (n − m + 1)(n − m + 2)P m−2
n (µ)

]
, (2 � m � n). (A.12)

Multiplying equation (A.8) by a factor (1 − µ2)−1/2 and substituting expression (1 −
µ2)−1/2P m

n (µ) from equation (A.11) into the received equation, we can obtain

(1 − µ2)1/2∂µP m
n (µ) = −n(n − m + 1)

2m(2n + 1)

[
P m+1

n+2 (µ) + (n − m + 2)(n − m + 3)P m−1
n+2 (µ)

]

+
(n + 1)(n + m)

2m(2n + 1)

[
P m+1

n (µ) + (n − m)(n − m + 1)P m−1
n (µ)

]
,

(1 � m � n). (A.13)

Transforming expression (A.13) according to equation (A.12), we obtain

(1 − µ2)1/2∂µP m
n (µ) = 1

2

[
P m+1

n (µ) − (n + m)(n − m + 1)P m−1
n (µ)

]
,

(1 � m � n). (A.14)

16



J. Phys. A: Math. Theor. 41 (2008) 355501 Y I Matveenko et al

From the definition of associated Legendre functions (5) it follows

(1 − µ2)1/2∂µP 0
n (µ) = P 1

n (µ), (n � 0). (A.15)

Equations (A.14) and (A.15) can be united as

(1 − µ2)1/2∂µP m
n (µ) = 1 + δm,0

2
P m+1

n (µ) − (n + m)(n − m + 1)

2
P m−1

n (µ),

(0 � m � n). (A.16)

Multiplying equation (A.16) by a factor µ, substituting into the received equation expression
µP m

n (µ) from equation (A.7), we find that

µ(1 − µ2)1/2∂µP m
n (µ) = 1 + δm,0

2(2n + 1)

[
(n − m)P m+1

n+1 (µ) + (n + m + 1)P m+1
n−1 (µ)

]

− (n + m)(n − m + 1)

2(2n + 1)

[
(n − m + 2)P m−1

n+1 (µ) + (n + m − 1)P m−1
n−1 (µ)

]
(0 � m � n). (A.17)

Appendix B. Four-term approximation

Truncation of the hierarchy (20) at n = 3 in the cylindrical basis of configuration space results
in 16 independent equations given below,
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